Virtual Learning

Physics

Conservative Forces \& Potential

Energy
May 20, 2020

Physics

Conservative Forces and PE: May 20,2020

Objective/Learning Target:

Students will examine gravitational potential energy and how it transforms then use it to solve various problems.

Quick Review \#1

Ignoring friction, rank from greatest to least the amount of gained gravitational potential energy for each of the following situations.

(a)

(b)

(c)

Quick Review \#1

The potential energy of the $10-\mathrm{N}$ ball is the same $(30 \mathrm{~J})$ in all three cases because the work done in elevating it 3 m is the same whether it is (a) lifted with 10 N of force, (b) pushed with 6 N of force up the 5-m incline, or (c) lifted with 10 N up each 1-m stair. No work is done in moving the ball horizontally (if we ignore friction). $\mathrm{a}=\mathrm{b}=\mathrm{c}$

(a)

(b)

(c)

Quick Review \#2

The roller coaster ride starts from rest at point A. Ignoring friction. Rank these quantities from greatest to least at each point:
a. Speed
b. KE
c. PE

Quick Review \#2

a. Speed - D>B>C>E>A
b. $K E-D>B>C>E>A$
c. $P E-A>E>C>B>D$

Work

Link: Conservative Forces and PE

Directions:

- Read through Conservative Forces and PE.
- Work through any examples on a separate piece of paper before you scroll down to the solution.
- On a separate piece of paper complete the practice problems on the following slides.
- Check your answers.
- For additional practice check out the conceptual questions and the problems and exercises in the table of contents for the online text linked above.

Practice Problem \#1

Fill in appropriate values for the PE and KE as the diver plummets downward into the bucket.

Practice Problem \#2

Belly-flop Bernie, who has a mass of 70 kg , dives from atop a 30 m tall cliff into the ocean below. What is Bernie's velocity as he strikes the water? Assume no air drag.

Practice Problem \#2 Answer

PE at the top of the flagpole equals the amount of KE just before striking the water.
$P E_{\text {top }}=K E_{\text {bottom }}$
$m g h=1 / 2 m v^{2}$
$70 \mathrm{~kg} \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times 30 \mathrm{~m}=1 / 270 \mathrm{~kg} \times \mathrm{v}^{2}$
$v=\sqrt{ }\left(2 \times 9.8 \mathrm{~m} / \mathrm{s}^{2} \times 30 \mathrm{~m}\right)=24 \mathrm{~m} / \mathrm{s}$

Practice Problem \#3

A spring whose spring constant is $850 \mathrm{~N} / \mathrm{m}$ is compressed 0.40 m . What is the maximum speed it can give to a 500 g ball? (Ignore friction)

Practice Problem \#3 Answer

```
PEspring }=K\mp@subsup{E}{\mathrm{ ball}}{
\(P E_{\text {spring }}=K E_{\text {bal }}\)
```

$$
1 / 2 k x^{2}=1 / 2 m v^{2}
$$

$1 / 2(850 \mathrm{~N} / \mathrm{m}) \times(0.40 \mathrm{~m})^{2}=1 / 2(0.500 \mathrm{~kg}) \times\left(\mathrm{v}^{2}\right)$
$\mathrm{v}=\sqrt{ }\left(\left(850 \mathrm{~N} / \mathrm{m} \times(0.40 \mathrm{~m})^{2}\right) / 0.500 \mathrm{~kg}\right)$
$\mathrm{v}=16.5 \mathrm{~m} / \mathrm{s}$

Ball flies away on releasing the spring

Additional Practice

For additional practice check out the conceptual questions and the problems and exercises in the table of contents from the online text linked above.

